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Bratislav D Irǐcanin† and Dejan M Gvozdíc‡
University of Belgrade, Faculty of Electrical Engineering, Bulevar revolucije 73, PO Box 35–54,
11120 Belgrade, Yugoslavia

Received 26 August 1997, in final form 20 January 1998

Abstract. The conventional approach to the modelling of semiconductor devices operation is
based on a numerical solution of transport equations. This paper exposes a complete analytical
treatment of transport equations for a two-valley semiconductor. We consider the case when
the geometry of the analysed structure permits us to assume that the transport in one of the
dimensions of the structure is dominant, and when the electric field is homogeneous and
stationary. The obtained solution for the case of generally set initial conditions is reduced to the
quadratures. We used the example of a p-i-n diode to demonstrate the superiority of the analytical
treatment as compared with the numerical one. The proposed approach offers the possibility
to determine exactly and quickly the spatial-temporal distribution of the electron concentration
within the structure. Considering the accuracy of the analytical procedure, compared with that
of the numerical one, the obtained solution could also be used as a kind of standard for the
analysis of particular approximate solutions of the considered type of partial differential equation
systems.

1. Introduction

The modern methods used in semiconductor technology, such as molecular beam epitaxy
(MBE) and metalorganic chemical vapour phase deposition (MOCVD), opened the
possibility to increase the degree of integration in semiconductor integrated circuits and
to fabricate submicron and nanostructure semiconductor devices. This caused a need for
new mathematical and physical models of carrier transport which would be able to describe
in detail the transport in such structures.

In modelling the operation of semiconductor devices with dimensions larger than one
micrometer it is usual to apply the drift-diffusion model coupled with the Poisson’s equation.
This model is obtained by the integration of the classical Boltzmann equation, assuming that
the carrier distribution can be described by a displaced Maxwell distribution [1]. However,
this assumption is not fulfilled for devices that have submicron dimensions. In addition,
the modelling of transport in semiconductor nanostructures is directly connected to quantum
effects which require a fundamentally different approach from that in micron and submicron
structures.

The electron transport in submicron semiconductor structures is mostly determined
by nonstationary effects such as ‘velocity overshoot’ or ‘ballistic transport’ [1]. These
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effects cannot be properly described by the classical drift-diffusion model. Therefore,
the Monte Carlo simulation is employed [1] to obtain relatively satisfactory results.
Nevertheless, due to the known limitations posed by the probabilistic approach and its
high demands for computer processing time, it cannot remain the only method for analysis
of transport processes. Another approach is based on the momentum method from which
the hydrodynamic modelof the transport equation is derived [1]. This model is also very
complex to implement numerically, since it consists of a system of partial differential
equations (PDEs) written in terms of carrier concentration, mean momentum and mean
particle energy.

In two-valley semiconductors, such as GaAs, InGaAs and AlGaAs, electron transfer
is predominantly influenced by intervalley transfer. The electron transport in this case is
well described by the hydrodynamic model [2]. The hydrodynamic model for a two-valley
semiconductor consists of a system of PDEs over carrier concentration, mean impulse and
mean kinetic energy for each of the valleys. Instead of the equation over the mean particle
(kinetic) energy it is possible to use an equivalent equation over mean temperature. Thus
we describe the spatial-temporal distribution of electron temperature within a semiconductor
device, as well as its influence on the distribution of the concentration itself, starting from
the temperature-dependent relaxation times [2, 15, 16].

However, this model is very difficult to solve, which is the reason why its
approximation—the so-calledphenomenological model—is used instead [3–5]. The
phenomenological model assumes that the stationary state for the kinetic degree of freedom
is already established, but the process of electron distribution over the valleys is not yet
completed. In this manner, the influence of electron temperature is implicitly taken into
account over the transfer timesτ1(E) andτ2(E) which are obtained using the Monte Carlo
simulation.

This paper presents the analytical solution of the PDEs of the phenomenological model
for the case when the structure of the semiconductor device permits us to approximate it
by one-dimensional transport and when the electric field is stationary and homogeneous.
The obtained solution is further applied in the special case of electron concentration profile
determination in conduction band valleys within the absorption layer of a p-i-n photodiode.
Finally, we present a comparison of the obtained exact solution with the conventional
numerical solution [4, 5], with a detailed analysis of discrepancies.

2. The model

The phenomenological model describes the intervalley transport in the relaxation time or
transfer time approximation, where these times are functions of the electric field [3–5].
The total electron concentration is determined by the electron concentrations in the central
(0) valley n1 and in the satellite (X, L) valleysn2 of the conduction band. In our further
consideration we assume that the electric field is stationary, homogeneous and strong enough
so that electron diffusion can be neglected. In that case the electron velocity in each of the
valleys is determined by the electric field intensityE and electron mobility for the particular
valley µi :

νi = νi(E) = µi(E)E (i = 1, 2) (1)

where the index ‘1’ corresponds to the central, and ‘2’ to the satellite valleys of the
conduction band. The electron velocity in the central valley is larger than in the satellite
one (ν1 > ν2). The phenomenological model for electrons is defined by the following set
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of PDEs with respect to the spatial-temporal concentration distribution:

∂n1

∂t
+ ν1

∂n1

∂x
= −n1

τ1
+ n2

τ2
+G1− R1

∂n2

∂t
+ ν2

∂n2

∂x
= −n2

τ2
+ n1

τ1
+G2− R2.

(2)

In equation (2)G1 andG2 denote generation, andR1 andR2 denote recombination terms
for each of the valleys, the coefficientsτ1 = τ1(E) andτ2 = τ2(E) are the electron transfer
times from the central into the satellite valley(τ1), and from the satellite into the central
one(τ2) [3–5].

In order to solve the PDE system (2) it is necessary to define initial and/or boundary
conditions dependent on the structure of the semiconductor device and its mode of operation.
In most of the semiconductor devices before the electric field is switched on charge
carriers inhabit the central valley of the conduction band, while the satellite valleys are
practically empty. Thus, the carrier distribution at the initial moment in the one-dimensional
approximation can be set in the following manner:

n1(x, 0) = Cf (x)h(x)
n2(x, 0) = 0

(3)

where C is a constant,f : [0, d] → R is an arbitrary function differentiable on the
segment [0, d] which, physically, represents the space of the semiconductor device
under consideration, andh(x) is the Heaviside function. Since the dimensions of the
semiconductor devices are finite and most often the Dirichlet-type boundary conditions can
be set at its boundaries, then1(x, 0) is defined usingh(x). Such a situation is encountered in
the case of a p-i-n photodiode with an absorption layer made of a two-valley semiconductor.
Using this example we present the whole procedure of obtaining the analytical solution of
the problem (2), (3), whered denotes the width of the absorption layer between the p-i-n
photodiode contacts. Let us assume that at the initial moment electrons are generated by
optical pulse excitation along the absorption layer only within the central valley, so that in
(2) we have

G1 = Cf (x)h(x)δ(t)
G2 = 0

(4)

whereδ(t) is the Dirac delta function (with respect to time). Here, as well as in the rest
of the text, we use that (customary) name although it would be more precise to apply the
phrase, ‘Dirac deltadistribution’. We also assume that the concentration of photogenerated
carriers is several orders of magnitude larger than equilibrium concentration. The relations
(3) are obtained by integration of system (2) fromt = 0− to t = 0+, only accounting for
relations (4). Accordingly, generation terms (4) lead to the initial conditions (3). Due to
the very low recombination rate compared with the electron transport rate in two-valley
semiconductors we assume that it can be neglected(R1 = R2 = 0). A similar treatment
is applicable for other semiconductor devices where these basic assumptions are satisfied
(MESFET, HEMT, etc).
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3. Analytical treatment

The problem to be solved (2), (3) can be recognized as the Cauchy problem. For that
purpose, the initial conditions are directly expanded in the following manner:

n1(x, 0) = Cf (x)h(x)
∂n1(x, 0)

∂t
= −C

((
f (x)

τ1
+ ν1f

′(x)
)
h(x)+ ν1f (x)δ(x)

)
n2(x, 0) = 0

∂n2(x, 0)

∂t
= C

τ1
f (x)h(x).

(5)

Let us try to transform the problem under consideration into a form more convenient
for solving. We shall transform the PDE system into a second-order equation with respect
to ni, (i = 1, 2). By removing the dependent variablen2 from the system (2) we reduce it
to the desirable second-order PDE overni :

∂2n1

∂t2
+ (ν1+ ν2)

∂2n1

∂x∂t
+ ν1ν2

∂2n1

∂x2
+
(
ν1

τ2
+ ν2

τ1

)
∂n1

∂x
+
(

1

τ1
+ 1

τ2

)
∂n1

∂t
= 0. (6)

By introducing new independent variablesα andβ via the transformation

α = x − ν1+ ν2

2
t β = ν2− ν1

2
t (7)

and by replacingn1 by a new dependent variablew according to

n1 = exp(−(A+ B)α + (A− B)β)w(α, β) (8)

where

A = 1

τ1(ν1− ν2)
B = − 1

τ2(ν1− ν2)
(9)

equation (6) assumes the following form:

∂2w

∂α2
− ∂

2w

∂β2
+ 4√

τ1τ2|ν1− ν2|w = 0. (10)

The expanded initial conditions become

w0(α) = w(α, 0) = C exp((A+ B)α) f (α)h(α) = ψ(1)0 (α)h(α)

w1(α) = ∂w(α, 0)

∂β
= C exp((A+ B)α)

×
((
(A+ B)f (α)+ 2

1− ν2/ν1
f ′(α)

)
h(α)+ 2

1− ν2/ν1
f (α)δ(α)

)
= ψ(1)

1 (α)h(α)+ ψ(1)
2 (α)δ(α).

(11)

The obtained problem (10), (11) is more convenient for solving than the initial problem
(2)–(5). However, by introducing new independent variables

p = α + β q = α − β (12)

equation (10) eventually becomes

∂2w

∂p∂q
+ 1

τ1τ2(ν1− ν2)2
w = 0 (13)
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which is the most convenient one for solving. It is ahyperbolic typePDE with a self-
adjoint inherent operator. The obtained equation is a special case of the so-called general
telegraphic equationwhose special cases are described in [6–8]. It is solved by using the
Riemann method where we assume that the Riemann functionV is

V (p, q;p0, q0) = r(z) (14)

with

z = (p − p0)(q − q0) (15)

V (q, q; q0, q0) = −1. (16)

Under the assumptionz = ζ 2, the Bessel differential equation is obtained:

∂2r

∂ζ 2
+ 1

ζ

∂r

∂ζ
+ r = 0 (17)

with the corresponding particular solutionr(ζ ) = J0(ζ ), whereJn(x) denotes a Bessel
function of the first kind of thenth order. By inversion of the applied transformations we
find that the Riemann function is equal to

V = J0

(
2√

τ1τ2|ν1− ν2|
√
(x − ν1t)(x − ν2t)

)
. (18)

For the solution of the PDE (10) with the initial conditions (11) we obtain

w(α − β, α + β) = 1
2(w0(α − β)+ w0(α + β))

+1

2

∫ α+β

α−β
J0

(
2√

τ1τ2|ν1− ν2|
√
(α − β − ξ)(α + β − ξ)

)
w1(ξ) dξ

− t

2τ1τ2|ν1− ν2|
∫ α+β

α−β
J1

(
2√

τ1τ2|ν1− ν2|
√
(α − β − ξ)(α + β − ξ)

)
×w0(ξ) dξ. (19)

Let us introduce a new variableθ :

θ = 2

√
−1

τ1τ2(ν1− ν2)2
(α + β − ξ)(α − β − ξ). (20)

It stems from here that

ξ = ξj (θ) = α + (−1)j

2

√
τ1τ2|ν1− ν2|

√(
t√
τ1τ2

)2

− θ2

= x − (ν1+ ν2)
t

2
+ (−1)j

2

√
τ1τ2|ν1− ν2|

√(
t√
τ1τ2

)2

− θ2 (21)

where for α > ξ is j = 1, while α < ξ implies j = 2. From (20) it can be
seen thatθ ∈ [0, t√

τ1τ2
], while for the variablesξj the following limitations are valid:

ξ1 ∈ [x − ν1t, x − ν1+ν2
2 t ] and ξ2 ∈ [x − ν1+ν2

2 t, x − ν2t ]. Now we transform the obtained
solution (19) to enable its use for the starting problem. Also, we utilize the relation

In(z) = (−i)nJn(iz) (22)

where In(x) is the modified Bessel function of the first kind andnth order, valid for all
complex valuesz ∈ C. Each of the integrals in (19) can be separated into a sum of two
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integrals with limitsα−β andα (in the first one), andα, α+β (in the second one), which
brings us to the formula

w(x, t) = 1
2(ψ

(1)
0 (x − ν1t)h(x − ν1t)+ ψ(1)

0 (x − ν2t)h(x − ν2t))−
√
τ1τ2|ν1− ν2|

4

×

∫ t√
τ1τ2

0
(ψ

(1)
1 (ξ1(θ))h(ξ1(θ))+ ψ(1)

1 (ξ2(θ))h(ξ2(θ)))
θI0(θ) dθ√(
t√
τ1τ2

)2
− θ2

+
∫ t√

τ1τ2

0
(ψ

(1)
2 (ξ1(θ))δ(ξ1(θ))+ ψ(1)

2 (ξ2(θ))δ(ξ2(θ)))
θI0(θ) dθ√(
t√
τ1τ2

)2
− θ2


+ t

2
√
τ1τ2

∫ t√
τ1τ2

0
(ψ

(1)
0 (ξ1(θ))h(ξ1(θ))+ ψ(1)

0 (ξ2(θ))h(ξ2(θ)))

× I1(θ) dθ√(
t√
τ1τ2

)2
− θ2

. (23)

Let us mention that the bottom limit of these integrals corresponds toα−β andα+β, and
the upper limit to the variableα in formula (19).

Now we analyse the Heaviside factors in the integrand functions of the solution (23).
Depending on their non-zero values, the solution (spatial-temporal dependence) can be
separated into four parts (not forgetting thatx and t cannot be negative). In the first region
x > ν1t is valid; here the values of the Heaviside functions areh(ξ1(θ)) = h(ξ2(θ)) = 1.
The second region is described by the inequalitiesν1+ν2

2 t < x 6 ν1t and in it is

h(ξ1(θ)) =
{

0 θ < θc

1 θ > θc

while h(ξ2(θ)) = 1 (in the whole region). The third region is characterized by the relation
ν2t < x 6 ν1+ν2

2 t , and there is

h(ξ2(θ)) =
{

0 θ > θc

1 θ < θc

and h(ξ1(θ)) = 0 (in the whole region). In the remaining, fourth region isx 6 ν2t and
the values of the Heaviside functions here areh(ξ1(θ)) = h(ξ2(θ)) = 0. In our previous
consideration we have introduced a cut-off valueθc of the variableθ , equal to

θc = 2√
τ1τ2|ν1− ν2|

√
(ν1t − x)(x − ν2t). (24)

Now in (23) only those addends remain for which the factorh(ξi(θ)) = 1, (i = 1, 2). This
suggests that the solution itself can be separated into four different expressions valid in
particular regions which are shown in figure 1.

Using the property of the Diracδ-function∫ b

a

δ(x) dx =
{

0 0 6∈ [a, b]

1 0∈ [a, b]
(25)
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Figure 1. Regions (I–IV) in the spatial-temporal dependence.

which stems directly from its definition we conclude that the result of the integration of the
part of the integrand which includesδ(ξ1(θ)) or δ(ξ2(θ)) only depends on whether or not

the functionsξ1(θ) and ξ2(θ) reach zero in the segmentθ ∈
[
0, t√

τ1τ2

]
for the considered

values of the variablex. If these functions are not equal to zero within this segment, the
integral of this part of the integrand will be equal to zero. This is just what happens in
regions I and IV. In regions II and III the functionsξ1(θ) and ξ2(θ) change their signs,
as established by the previous analysis of Heaviside functions, so that in these regions the
integrals are non-zero.

Finally, by convenient rearrangement of the addends in the integrated expression, the
obtained solution is reduced to the following formulae:
• for x > ν1t

w(x, t) = 1

2
(ψ

(1)
0 (x − ν1t)+ ψ(1)

0 (x − ν2t))+ F1

(
0,

t√
τ1τ2

)
+ F2

(
0,

t√
τ1τ2

)
(26a)

• for ν1t > x > ν1+ν2
2 t

w(x, t) = 1

2
ψ
(1)
0 (x − ν2t)+ F1

(
θc,

t√
τ1τ2

)
−D(θc, t)+ F2

(
0,

t√
τ1τ2

)
(26b)

• for ν1+ν2
2 t > x > ν2t

w(x, t) = 1
2ψ

(1)
0 (x − ν2t)+ F2(0, θc)−D(θc, t) (26c)

• for ν2t > x > 0

w(x, t) = 0 (26d)

which will be additionally elucidated. We define the functionsFi(a, b) as integrals given
by the following expressions:

Fi(a, b) =
∫ b

a

pf i(θ) dθ√(
t√
τ1τ2

)2
− θ2

(27)

where

pf i(θ) = −
√
τ1τ2

4
|ν1− ν2|θI0(θ)ψ

(1)
1 (ξi(θ))+ 1

2

t√
τ1τ2

I1(θ)ψ
(1)
0 (ξi(θ)). (28)

Recall that the functionsψ(1)
0 andψ(1)

1 are defined in the transformed expanded initial
conditions (11). The functionsFi(a, b) have been introduced to make the expression of the
solution (26a–d) less comprehensive, but they are also algorithmically convenient from the
aspect of software implementation.
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Consequently, from the nature of initial conditions, namely the part of the integrand
comprising the Diracδ-functionsδ(ξ1(θ)) andδ(ξ2(θ)), the addendD(θc, t) in (26b, c) is

D(θc, t) = Cν1
√
τ1τ2

2

θcI0(θc)f (0)√(
t√
τ1τ2

)2
− θ2

c

. (29)

In expression (27) we calculate the principal value (v.p.) of the integral (in Cauchy
sense) in the case of a singularity in the upper boundary.

Finally,

n1(x, t) = ekxx+kt tw(x, t) (30)

where the exponential coefficients are

kx = τ1− τ2

τ1τ2(ν1− ν2)

kt = ν2τ2− ν1τ1

τ1τ2(ν1− ν2)

(31)

which originated from expressions (7)–(9).
The solution for the functionn2 can be obtained by an analogous procedure, bearing in

mind that the starting system is reduced to the same equation (10) or (13). The difference
is that the expanded initial conditions are in this case

w0(α) = w(α, 0) = 0

w1(α) = ∂w(α, 0)

∂β
= −2CA exp((A+ B)α) f (α)h(α) = ψ(2)1 (α)h(α).

(32)

The following formulae are obtained:
• for x > ν1t

n2(x, t) = ekxx+kt t
(
H1

(
0,

t√
τ1τ2

)
+H2

(
0,

t√
τ1τ2

))
(33a)

• for ν1t > x > ν1+ν2
2 t

n2(x, t) = ekxx+kt t
(
H1

(
θc,

t√
τ1τ2

)
+H2

(
0,

t√
τ1τ2

))
(33b)

• for ν1+ν2
2 t > x > ν2t

n2(x, t) = ekxx+kt tH2(0, θc) (33c)

• for ν2t > x > 0

n2(x, t) = 0. (33d)

The integralsHi(a, b) are defined in the following manner:

Hi(a, b) = −
√
τ1τ2|ν1− ν2|

4

∫ b

a

phi(θ) dθ√(
t√
τ1τ2

)2
− θ2

(34)

where the well-behaved part of the integrand function is equal to

phi(θ) = θI0(θ)ψ
(2)
1 (ξi(θ)). (35)

In this manner we practically conclude the analytic solution procedure, where the
obtained solutions forn1(x, t) andn2(x, t) are continuous functions.
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However, note that some of the integrals in (27) and (34) are improper. Their form is

P(a, b) =
∫ b

a

p(θ) dθ√
c2− θ2

(b 6 c) (36)

and it can be seen that forc = b they are singular in the upper boundary. This singularity has
the form of an inverse square root. Therefore, the singularity is removable. By substituting

θ = b − ϑ2 (37)

in the integral (36), we obtain

P(a, b) = −2
∫ 0

√
b−a

p(b − ϑ2)√
2b − ϑ2

sgnϑ dϑ = 2
∫ √b−a

0

p(b − ϑ2)√
2b − ϑ2

dϑ (38)

because the new variableϑ cannot be negative. Now we can calculate the obtained integrals
by some of the standard methods of numerical integration, taking care about the nature of
the integrand function.

Let us note that in the analytical solution (for which it is said to be solved in quadratures)
there is nevertheless a part which should be calculated approximately, and this part is the
value of the integral. However, bearing in mind the complexity (the order) of the required
approximate methods and knowing which integrals and starting equations we are dealing
with, we conclude that the proposed methods offer an essential improvement in comparison
with the methods utilized until now in the analysis of the phenomena under consideration
by approximate solution of some special cases of the Cauchy problem (2)–(5).

4. An example of the modelling of a semiconductor device

The proposed exact treatment of the model described by the PDE system (2) and by the initial
conditions of general type (3) or (5) gives results potentially applicable in the modelling of
electron transport in semiconductor electron devices. We demonstrate the efficiency of the
analytical approach in the example of a p-i-n photodiode with the absorption layer made of
a two-valley semiconductor (GaAs, InGaAs, AlGaAs). This efficiency is reflected not only
in the quantitative (numerical) superiority, but also in the possibility to create a qualitatively
clearer and more detailed picture of carrier transport mechanisms in such semiconductors.
The advantage in rapidity of reaching the solution (i.e. the number of performed computer
operations) is evident, but we did not measure it explicitly, since the numerical processes
involved are incomparable [9]. It follows from the fact that the numerical method requires
all the previous calculations in the discretization mesh, as opposed to the analytical one.
The quality of the analytical solution became fully visible in the comparative analysis with
the approximate solution obtained by purely numerical treatment of the starting equations
using the finite difference method.

Let us consider the situation corresponding to the case of homogeneous distribution of
photogenerated charge along the photodiode absorption layer at the momentt = 0. This
situation occurs when the reciprocal value of the absorption coefficientα is much smaller
than the absorption layer width(α−1 � d). In this case the function describing the initial
conditions is constant, i.e.f (x) ≡ 1.

4.1. Application of the analytical treatment

In the following we present the analytical solution obtained in section 3, corresponding to
the particular casef (x) ≡ 1. Under this condition the analytical solution can be rewritten
in a much more compact form which is simpler for effective calculations.
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First, the expanded initial conditions (5) now become

n1(x, 0) = Ch(x)
∂n1(x, 0)

∂t
= −C

τ1
h(x)− Cν1δ(x)

n2(x, 0) = 0

∂n2(x, 0)

∂t
= C

τ1
h(x)

(39)

while the equalities (11) and (32) are reduced to the equalities (40) and (41):

w0(α) = w(α, 0) = C exp((A+ B)α) h(α) = ψ(1)0 (α)h(α)

w1(α) = ∂w(α, 0)

∂β
= C exp((A+ B)α)

(
(A+ B)h(α)+ 2

1− ν2/ν1
δ(α)

)
= ψ(1)

1 (α)h(α)+ ψ(1)
2 (α)δ(α)

(40)

w0(α) = w(α, 0) = 0

w1(α) = ∂w(α, 0)

∂β
= −2CA exp((A+ B)α) h(α) = ψ(2)1 (α)h(α)

(41)

respectively. We present the expressions (26a–d) and (33a–d) for concentrationsn1 andn2

in a form which is compact and thus more convenient for qualitative consideration. After
a number of algebraic transformations, the expressions for the concentrationsn1 andn2 are
obtained:
• for x > ν1t

n1(x, t) = C
(

1

1+ τ2/τ1
+ 1

1+ τ1/τ2
e−t

τ1+τ2
τ1τ2

)
(42a)

n2(x, t) = C

1+ τ1/τ2
(1− e−t

τ1+τ2
τ1τ2 ) (42b)

• for ν1t > x > ν1+ν2
2 t

n1(x, t) = C
(

1

1+ τ2/τ1
+ 1

1+ τ1/τ2
e−t

τ1+τ2
τ1τ2 − 1

2
e−

t
τ1

)
− ekxx+kt tF1(0, θc) (43a)

n2(x, t) = C

1+ τ1/τ2

(
1− e−t

τ1+τ2
τ1τ2

)
− ekxx+kt tH1(0, θc) (43b)

• for ν1+ν2
2 t > x > ν2t

n1(x, t) = C

2
e−

t
τ2 + ekxx+kt tF2(0, θ)c) (44a)

n2(x, t) = ekxx+kt tH2(0, θc) (44b)

• for ν2t > x > 0

n1(x, t) = 0 (45a)

n2(x, t) = 0. (45b)

In establishing the expressions (43a–b) and (44a–b) we took into account that the
addend (29), stemming from the nature of the initial conditions, has a small influence
on the obtained concentration values and can be neglected. It is the consequence of the
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numerical values of the constants and, generally speaking, it could not be fulfilled. Besides
the known equalities, we used in the previous expressions the following identities (cf [10]):∫ t√

τ1τ2

0
cosh

 τ2− τ1

2
√
τ1τ2

√(
t√
τ1τ2

)2

− θ2

 I1(θ) dθ√(
t√
τ1τ2

)2
− θ2

=
√
τ1τ2

t

(
cosh

t

2

τ1+ τ2

τ1τ2
− cosh

t

2

τ1− τ2

τ1τ2

)
(46)

∫ t√
τ1τ2

0
cosh

 τ2− τ1

2
√
τ1τ2

√(
t√
τ1τ2

)2

− θ2

 θI0(θ) dθ√(
t√
τ1τ2

)2
− θ2

= 2
√
τ1τ2

τ1+ τ2
sinh

t

2

τ1+ τ2

τ1τ2
.

(47)

Owing to (46) and (47), in this—special—case we have removed all the possibly existing
singularities in the integrals (27) and (34).

Regarding the remaining numerical integration (on the interval(0, θc)) we used
Romberg’s method [11], and special care has been granted to the calculation of the values
of modified Bessel functions (due to [12]).

Based on the comparative analysis of the exact (analytical) and approximate (numerical)
approach to this task we substantiate the generality and advantages of the first one.

4.2. Numerical treatment

The PDE system (2), or the equivalent PDE (10) (a detailed analysis of such PDEs is
given in [13]) ishyperbolic. There are various methods which can be applied in numerical
calculation of the approximate solution of both the starting and the transformed problem
(10), (11). In our research we decided to use the method of finite differences directly applied
to the initial problem (2), (5). Since these equations describe the carrier flow, the choice
of the scheme and the discretization steps should be performed to accurately describe the
transport process in each step. One of the schemes to be found in literature is the so-called
upwind scheme [14]. It uses the form of back finite differences and it has shown good
results in the treatment of similar phenomena in the modelling of two-valley semiconductor
devices [4,5]. The discretization steps over time1t and position1x must fulfil the stability
criterion which is given here by

1x > 1t max
i
{νi}. (48)

In the proposed finite difference form the problem (2)–(5) becomes the following system
of difference equations:

(n∗1)
k+1
j − (n∗1)kj
1t

+ ν1(n
∗
1)
k
j − ν1(n

∗
1)
k
j−1

1x
= − (n

∗
1)
k
j

τ1
+ (n

∗
2)
k
j

τ2

(n∗2)
k+1
j − (n∗2)kj
1t

+ ν2(n
∗
2)
k
j − ν2(n

∗
2)
k
j−1

1x
= − (n

∗
2)
k
j

τ2
+ (n

∗
1)
k
j

τ1

(49)

with the initial conditions

(n∗1)
0
j = C

(n∗2)
0
j = 0

(50)
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Figure 2. Mesh-point for the upwind scheme for numerical calculation of the PDE system (2)
using (49) in terms ofn∗i (x, t), (i = 1, 2).

(for all j ), where1t and 1x are conveniently chosen discretization steps, andn∗i =
n∗i (x, t), (i = 1, 2), numerically obtained solutions for concentrations. Figure 2 shows
schematically the mesh-point relevant in each step. In our calculations we adopted the
valuesx = 0 (12.5× 10−3) 5 µm andt = 0 (10−3) 60 ps,C = 1. Thus, we obtained the
values of the normalized concentration in the conduction band valleys.

4.3. The comparative analysis of analytical and numerical solutions with physical
consequences

From the obtained relatively simple equations (42a)–(45a) and (42b)–(45b) it can be
observed that there is a general exponential time dependence of concentration. Explicit
formulae (42a)–(45a) and (42b)–(45b) point to a certain effect which cannot be observed
from the numerically obtained solutions. In those equations there is a new time constant
describing the concentrations in the valleys of the conduction band. It is equal to half of the
harmonic mean of the time constantsτ1 andτ2. This explicitly shows the manner of transfer
timesτ1 andτ2 electron concentration distribution in each of the valleys. In regions I and
IV the obtained solution does not depend on the variablex. This is a consequence of
specific initial conditions determined by a constant functionf . In contrast, in the remaining
regions (II and III) that dependence exists. Besides that, in expressions (43), (44) there is an
implicit dependence of carrier velocityν1 andν2, which can be seen in formulae (31), (27),
(34) and (24). Only the analytical approach shows that within the region wherex > ν1t the
following asymptotic relations are valid:

n1→ C

1+ τ2/τ1
n2→ C

1+ τ1/τ2
(51)

(t →∞), while generally (in the other regions) the following is valid:

n1→ 0 n2→ 0. (52)

However, the relations (51) could be obtained from equation (2), but the restriction for the
range of the validity of (51) could not be perceived only considering them. Otherwise,
relations (51) and (52) describe the saturation process.

We performed a comparative analysis of our analytical and standard numerical solution
for three representative values of the parameter (electric field intensityE): for weak
(5 kV cm−1), intermediate (10 kV cm−1) and strong (30 kV cm−1) fields activity, when
electron ‘heating’ in the semiconductor is intensive.
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Figure 3. Spatial-temporal distribution of normalized concentrationn1(x, t) in the central(0)
valley for electric fieldE = 5 kV cm−1.

Figure 4. Spatial-temporal distribution of normalized concentrationn∗1(x, t) in the central(0)
valley for electric fieldE = 5 kV cm−1.

Figures 3, 6, 9 and 12 are the graphical illustrations of the concentrationsn1 and
n2 (obtained according to section 4.1) for characteristic parameter values in a two-valley
semiconductor according to [4, 5](τ2 = 5 ps), as well as for maximal values ofx
(6 d = 5 µ m) and t (6 60 ps) relevant for the optoelectronic devices designed utilizing
this principle. Figures 4, 7, 10 and 13 show numerically obtained concentrationsn∗1 andn∗2
(section 4.2) and figures 5, 8, 11 and 14 depict the values of spatial-temporal distribution
of absolute errorsε1 = n1− n∗1 andε2 = n2− n∗2.
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Figure 5. Spatial-temporal distribution of the differenceε1(x, t) of the obtained concentrations
in the central(0) valley for electric fieldE = 5 kV cm−1.

Figure 6. Spatial-temporal distribution of normalized concentrationn1(x, t) in the central(0)
valley for electric fieldE = 10 kV cm−1.

When we consider weak electric fields, the intervalley transfer between the conduction
band valleys exists, but is significantly less intensive than in the case of strong fields.
Those carriers not scattered by the electric field and remaining in the central valley during
transport move much faster than the carriers in the satellite valleys. It is a consequence of
the lower effective mass, i.e. higher mobility, which is two orders of magnitude higher in the
central valley than in the satellite ones. Such carriers leave the semiconductor very quickly.
Their transport determines the region in which the relationx > ν1t is valid (region I; see
figure 1) in the analytical solution. The carriers scattered from the central valley into the
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Figure 7. Spatial-temporal distribution of normalized concentrationn∗1(x, t) in the central(0)
valley for electric fieldE = 10 kV cm−1.

Figure 8. Spatial-temporal distribution of the differenceε1(x, t) of the obtained concentrations
in the central(0) valley for electric fieldE = 10 kV cm−1.

satellite valleys return into the central valley. The flow of these carriers is described by
the expressions corresponding to the region whereν2t < x < ν1t (regions II and III). This
means that the carrier transport proceeds through the central valley, while the intervalley
transfer can be represented as a kind of a ‘braking’ mechanism.

In the strong electric field the transport mechanism is similar, but the intervalley transfer
becomes so strong that electrons are transferred into the satellite valley in a very short time,
while the central valley remains practically empty. The carrier transport continues to proceed
via the central valley, and due to the strong electric field the electrons returned from the
satellite valley into the central valley quickly go back into the satellite valley. This creates



3012 B D Iri čanin and D M Gvozdić

Figure 9. Spatial-temporal distribution of normalized concentrationn1(x, t) in the central(0)
valley for electric fieldE = 30 kV cm−1.

Figure 10. Spatial-temporal distribution of normalized concentrationn∗1(x, t) in the central(0)
valley for electric fieldE = 30 kV cm−1.

an impression that the electron flow proceeds through the satellite valley with a velocity
whose intensity is between the valuesν1 andν2.

Figures 3 and 4 show three-dimensional spatial-temporal profiles of the electrons
concentration in the central valley for the electric field intensity of 5 kV cm−1, obtained
analytically and numerically, respectively. At a first glance it could appear that the solutions
are identical. However, we can see the additional information in the added two-dimensional
contour plots. In figure 3 we can easily see the boundaries of the regions I and IV, i.e. the
straight linesx = ν1t and x = ν2t , while in the numerical solution we can see only the
boundary of the region I. Also, it can be seen that forx > ν1t the analytical and numerical
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Figure 11. Spatial-temporal distribution of the differenceε1(x, t) of the obtained concentrations
in the central(0) valley for electric fieldE = 30 kV cm−1.

Figure 12. Spatial-temporal distribution of normalized concentrationn2(x, t) in the satellite
(X, L) valleys for electric fieldE = 10 kV cm−1.

solution coincide for the most part, which is confirmed by figure 5 representing the spatial-
temporal dependence of the differenceε1(x, t) between the results obtained analytically
and numerically. This difference shows clearly that the largest deviation appears near the
straight boundary linex = ν1t in the regions II and III. It is obvious that the error is
largest at the very beginning of the numerical procedure, where the ‘stepped’ boundary
condition is posed. From the point of view of the transport processes, this means that the
flow of the electrons which did not leave the central valley(x > ν1, t) can be successfully
described, while the discrepancy occurs for the transport of the electrons returning from the
satellite valleys into the central one. The use of a more complex algorithm, for example the
‘shock-capturing algorithm’ (see [15, 16]) can minimize such errors for the cost of increased
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Figure 13. Spatial-temporal distribution of normalized concentrationn∗2(x, t) in the satellite
(X, L) valleys for electric fieldE = 10 kV cm−1.

Figure 14. Spatial-temporal distribution of the differenceε2(x, t) of the obtained concentrations
in the satellite (X, L) valleys for electric fieldE = 10 kV cm−1.

requirements for processor time and memory storage.
With an increase of the intensity of the electric fieldE the difference in behaviour

between the analytical solution (figures 6 and 9) and numerical one (figures 7 and 10) for the
concentrationn1 becomes more pronounced, although the absolute value of the differenceε1

decreases (figures 8 and 11). The decrement of the absolute error is understandable, since
due to the intensive intervalley transfer the values of the functionsn1(x, t) and n∗1(x, t)
sharply decrease (toward zero) after the initial moment which causes the decrease of their
difference. However, the observed differences show that, when following the strong field
activity transport, the applied difference scheme follows with increasing difficulties (or does
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not follow at all) the changes in the regions II and III caused by electrons returning from
the satellite valley into the central one.

The return of electrons from the satellite into the central valley can be seen in three-
dimensional figures of the concentrationn1 as a ‘hump’ spreading through regions II and III.
It can be explicitly seen for extremely strong(E = 30 kV cm−1) electric fields (figure 9),
while for a field of 10 kV cm−1 the obtained figure is the result of superposition of the spatial-
temporal distributions of the carriers which remain for all the time transported through the
central valley (region I) and the carriers returned from the satellite valleys into the central
one (regions II and III).

By applying the exact solution we perceive the dynamics of the carrier transport and
learn that the transport processes within the central valley proceed through two mechanisms.
The primary mechanism is the flow of the carriers which do not leave the central valley
during transport, while the other mechanism is based on the transport of carriers returned
from the satellite valleys into the central valley. The second mechanism, however, cannot be
perceived according to the simple numerical solution which ‘smoothens’ the consequences
of this mechanism in the diagram showing the spatial-temporal dependence of electrons
within the central valley.

Figures 12 and 13 show the solution for the carrier concentration in the satellite valley
obtained analytically and numerically, respectively. Figure 14 shows that the absolute
discrepancy of these solutions is extremely small. Of course, the discrepancy is largest at
the beginning of the numerical procedure, the same as in the case of the central valley.

The satellite valley works like a ‘reservoir’ of electrons during transport. At the initial
moment it accepts the electrons from the central valley, and then, after the number of
electrons in the central valley is decreased due to transport, it returns the electrons into the
central valley. In this case the numerical procedure is able to correctly follow the electron
transport.

As stated in the introduction, the developed analytical procedure can be applied to those
two- and three-dimensional models of semiconductor structures where the transport along
one of the coordinates may be taken as dominant in comparison with the other ones. Such
situations occur relatively frequently, as for example, in [3], where one-dimensional electron
transport in a MESFET channel is analysed, as well as in the papers [15, 16], where the one-
dimensional hydrodynamic model is applied to consider electron transport in ann+−n−n+
structure. In a HEMT, electrons in the channel show large mobility only in the confinement
plane, i.e. within the quantum well. The transport of these electrons proceeds only in the
direction of the component of the electric field between the source and the drain along
the confinement plane. Such transport can be considered as one-dimensional and thus it is
possible to describe it by the presented model of transport equations, since quantum effects
most significantly influence the electron confinement within the channel.

This analytical technique, unfortunately, does not permit an exact treatment of
multidimensional models of semiconductor structures, regardless of the other conditions,
since the system of equation (2) would contain at least one more spatial variable (y and/or
z) and its partial derivative. Nevertheless, for such a system it is not possible to determine
reliably in advance the existence of a solution which could be represented in an analytically
closed form, as shown in [17].

Consequently, the previous analysis only describes the system of equation (2). Since the
transport is one-dimensional, the boundary conditions can only be considered at the contacts
of the device where an electric field is established. The equations from the system (2) are
practically symmetrical with regard to the partial derivatives over the variablesx and t .
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Therefore, it is justified to expect that an analytical solution could also be found in the
situation in which, relation (5) at the boundaryx = 0, Dirichlet and Neumann’s boundary
conditions are simultaneously given, since the solution procedure would then be reduced to
the already presented treatment of the Cauchy problem.

The presented analytical solution could be used for qualitative quantitative description
of some other phenomena besides those mentioned, depending on their character, i.e. the
possibility to model them, even only approximately, by equation (2), or for the different
particular initial conditions of general type (5).

5. Conclusion

This work presents a detailed analysis of a general initial condition problem able to
describe transport processes appearing in some two-valley semiconductor electron devices.
A procedure is developed for one-dimensional exact explicit calculation of the function
values (i.e. concentrations)n1 andn2 for arbitrary values of independent variablesx and t ,
according to the expressions (26a–d), (30) and (33a–d). It is shown that a PDE system can
be solved analytically (in quadratures) i.e. it can be reduced to the problem of calculating
numerical values of integralsFi andHi , (i = 1, 2), according to (27) and (34). Some of
these integrals may be improper, but bearing in mind their convergence, some difficulties
arising due to the singularity in the upper boundary can easily be overcome. However,
in the proposed special case, describing the operation of p-i-n photodiodes, that problem
disappears, and the obtained expressions become more compact and significantly simpler
for numerical calculation. The achieved results are compared with the numerical solution
obtained using the finite difference method by applying the so-called upwind scheme which
is used most often for these kind of problems. The detailed analysis of the obtained
error, with graphical illustrations for various representative values of parameters, is given.
Beside the described advantages, the analytical treatment offers an additional possibility to
independently calculate the concentrationsn1 and n2 in an arbitrary positionx and at an
arbitrary momentt , while in the numerical solution there is an unavoidable limitation due
to the discretization of the starting problem. The numerical method also requires all the
previous calculations in the discretization mesh, which significantly increases the amount
of time spent on calculations when compared with the implemented analytically obtained
formulae.

The accuracy of calculatingn1 and n2 is substantially improved in comparison with
the methods of its calculation applied until now. The proposed insight into the transport
mechanisms and the described phenomena becomes general, as opposed to the analyses
known to the authors. The presented method also provides a new and very important
possibility of optimization of the electric field parameter values, in order to obtain the
desired optimal concentrationsn1 andn2. Finally, the presented approach could be used in
the analysis of electron transport and in certain real semiconductor devices where the electric
field can be considered as homogeneous and stationary and for which the initial conditions
of the presented general type (5) are valid. For example, in some situations it could also be
possible to solve the equations of the hydrodynamic model if the corresponding coefficients
were constant with respect to the independent variables, since the PDEs are of the same
type as in the considered phenomenological model.

Finally, note that, bearing in mind the accuracy of the analytical and numerical proce-
dure, the obtained solution could serve as a kind of ‘standard’ for assessing the efficiency
of particular approximate methods for solution of PDE systems of the considered type.
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